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Pricing Decisions during Inter-generational Product Transition 

Abstract  

How should companies price products during an inter-generational transition? High uncertainty in a 

new product introduction often leads to extreme cases of demand and supply mismatches. Pricing is 

an effective tool to either prevent or alleviate these problems. We study the optimal pricing decisions 

in the context of a product transition in which a new generation product replaces an old one. We 

formulate the dynamic pricing problem and derive the optimal prices for both the old and new 

products. Our analysis sheds light on the pattern of the optimal prices for the two products during the 

transition and on how product replacement, along with several other dynamics including substitution, 

external competition, scarcity and inventory, affect the optimal prices. We also determine the optimal 

initial inventory for each product and discuss a heuristic method. 

Keywords: dynamic pricing; product transition; new product introduction; Multinomial Logit 

model 
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1.  Introduction   

In high-tech industries, a company periodically replaces the current product with a newer generation 

product. In many cases, this transition does not occur instantaneously but rather involves a transition 

period during which the company sells both products.  The introduction of a new product creates 

high uncertainty in both demand and the supply. If many new features are added to the new genera-

tion product, it is difficult to predict its acceptance by the customers. Furthermore, there is uncer-

tainty in how smoothly the suppliers handle the technological or production changes for the new 

product, which often results in delays in the new product release.  

This paper is motivated by collaborative work with a telecommunications equipment manufac-

turer. In this industry, the replenishment lead time is about 18 weeks: 13 weeks for procuring com-

ponents plus 5 weeks for production and testing at the contract manufacturer. A product transition 

starts with the release of the new product and ends with the old product demand dropping to a negli-
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gible level, and usually lasts from a few weeks to a few months. With an 18-week lead time, any re-

plenishment order placed during the transition will not arrive before the transition ends. Therefore, 

once the transition starts, there is little chance to correct the initial inventory decisions, even if a de-

mand-supply mismatch becomes evident. Consequently, the company often runs out of the product 

that customers want while having excess of the other.  

For example, a chip supplier issued an end-of-life notice for the chipset used in one of the com-

pany’s wireless products, Blofeld, which drove the company to introduce the next generation product 

Blofeld II. The company had expected the transition to be quick and did not stock up inventory for 

the old chipset. Unfortunately, there were unanticipated design issues around the new chipset that 

delayed the release of Blofeld II. Consequently, the company kept selling Blofeld long after the 

scheduled release date of Blofeld II, creating a shortage of Blofeld. To counteract such supply risks, 

operations managers tend to add large inventories for the old product. However, a generous supply 

cushion can result in excess inventory of the old product at the end of the transition, which was the 

case for another transition at the same company.  This time, they were phasing out a product with 

high sales volume and had purchased a large inventory for the old product to avoid any supply gap 

and lost sales.  Ironically, when the new generation product was delivered on schedule, it left the 

managers in another dilemma. If they were to release the new product, Sultan II, as scheduled, they 

might be stuck with excess inventory of Sultan, the old product. If they delayed the release of Sultan 

II, they would avoid this problem; but this would be a costly option because Sultan II had a better 

margin than Sultan. Eventually the company decided to delay the new product introduction in se-

lected sales regions and forego some of the margin benefits to alleviate the excess problem.  

The countermeasures for addressing a demand-supply mismatch during a product transition are 

very limited due to the long lead time. We study in Li et al. (2010) the option of product substitution: 

When one product is depleted, a company may offer the other one as a substitute. Pricing is another 

option: The managers can manipulate the prices of the two products to mitigate the risk of demand 
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and supply mismatch. If sales of the old product are sluggish during the transition, they could dis-

count it. If the new product does not sell well, managers may increase the price of the old product to 

make the new appear more attractive. 

In this paper, we study the single-firm pricing problem for a product transition in which the firm 

introduces a new product to replace an existing, old product. We term this an inter-generational 

product transition, and contrast this with the case of a “completely new” product that has no direct 

predecessor and is designed to meet a new set of customer needs. For example, the replacement of 

Canon’s camera model PowerShot SD700 by SD800 is an inter-generational transition, whereas the 

first introduction of the “iPhone” is not. While both cases are important for business success, the 

former is a day-to-day problem facing decision makers in technology companies and is the focus of 

this paper.  

We consider a finite time horizon that starts when the new product is introduced and that ends 

when the transition finishes, namely when the demand of the old product has dropped to a negligible 

level.  We are given or determine the initial inventories of the old and new products, and there is no 

option for replenishment during the transition. In the transition, the demand of the old product gradu-

ally phases out while the new phases in and will continue to be sold beyond the transition. Due to the 

similarities of the two products, any pricing decision for one product affects the demand of both 

products. Therefore, we determine the optimal prices for the two products simultaneously, as a func-

tion of time and inventory.  

This pricing problem differs from previously studied dynamic pricing problems in that the two 

products not only compete with each other as two substitute products, but one is on a path to replace 

the other. As such we need to adapt existing demand models to capture this phenomenon of product 

replacement. The existing literature on multi-product pricing problems, as we review in the next sec-

tion, treats product value as constant over time and allows the products’ demands to vary with prices. 

In contrast, during a product transition, the old product becomes less attractive over time whereas the 
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newer generation becomes more attractive; as customers learn about and gain confidence in the new 

product, they increasingly view the old product as obsolete.  In contrast to the existing literature, we 

must determine the dynamic prices, accounting for the substitution between the old and the new 

products as well as this dynamic change in tastes.    

In addition to solving for the optimal dynamic prices, we study the effect on the optimal price tra-

jectories of the two products due to product replacement, due to product substitution, due to external 

competition, due to scarcity, and due to inventory.  

We find that the transition from the old product to the new one forces a company to price both 

products lower during the transition than outside of the transition window due to the replacement ef-

fect. We also find that the customers’ preference for the no-purchase option (buying neither the old 

nor the new product) can affect the optimal prices significantly and may dominate the price trend. 

The larger a company’s market share, the more it is affected by changes in the no-purchase option.  

 In addition, we demonstrate how certain product or market characteristics, such as the speed of 

the transition, customers’ price sensitivity, and the speed of product obsolescence, affect the pricing 

decisions. For instance, contrary to our intuition, high price sensitivity leads to less price swings dur-

ing the transition due to the effect of product replacement. Previous dynamic-pricing literature has 

not considered product replacement, and hence does not find this dynamic.  

Proper inventory planning for product transition is critical as shown in the motivating examples. 

In this paper, we also consider the initial inventory decision along with the dynamic pricing problem 

in a product transition.   

The remainder of this paper is organized as follows: In Section 2, we review the relevant litera-

ture. In Section 3, we specify the problem and the demand model. We solve for the optimal prices in 

Section 4 and identify the key dynamics influencing the optimal prices in Section 5. In Section 6, we 

determine the optimal initial inventory and present a heuristic method. We conclude with a discus-

sion on the limitations of the model and future research possibilities. The proofs are in the Appendix, 
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available as Online Supplement. 

2.  Literature Review 

Gallego and van Ryzin (1997) is one of the first to study dynamic pricing problems for multiple 

products. They do not explicitly model the demand relationships among the products but instead as-

sume a generic set of demand functions. Bitran and Caldentey (2003) also give a generic formulation 

of the multiple-product pricing problem and provide an optimality condition. In general, these ge-

neric formulations can say very little about the optimal policy. Maglaras and Meissner (2006) extend 

the Gallego and van Ryzin (1997) model to consider a joint revenue management and capacity allo-

cation problem for multiple products that share capacity. Zhang and Cooper (2009) consider the pric-

ing problem for substitutable flights for an airline, using a similar demand model. Our paper differs 

from this literature in that we need to model both the substitution between the two generations of 

products, and the product replacement as the demand transitions from the old product to the new 

product.  Thus, we need to formulate and consider demand models that allow the integration of both 

effects. 

Existing literature considers several ways to model demands for substitutable products. The Mul-

tinomial Logit (MNL) model is first proposed by Luce (1959). Under the MNL model, the cus-

tomer’s purchase probability iρ  depends on his/her utility from each product  

through where K is the set of possible customer options. The MNL model has 

been used to predict individual choices (McFadden 1986), as well as aggregate market share for new 

products (Berry 1994).  

iu

Kkee
k

uu
i

ki ∈= ∑ ,/ρ

Many pricing models for multiple products use the MNL choice model. However, we are not 

aware of any papers that consider product replacement as occurs during an inter-generational product 
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transition.1  This product replacement typically induces two contrasting S-shaped demand functions, 

as the new product replaces the old.  This phenomenon creates interesting pricing dynamics that have 

not been previously studied by researchers.  

Hanson and Martin (1996) study the product line pricing decisions using the MNL model and 

show that the profit function is not quasi-concave in prices. They use a “path-following” computation 

approach to obtain the optimal prices. It is a single-period model and they do not consider inventory 

in the pricing decision. Aydin and Porteus (2008) study a single-period multi-product newsvendor 

problem with both inventory and pricing decisions.  They show that the first-order condition leads to 

a unique optimal solution if the objective function is separately quasi-concave in each product price 

and the second order cross partials are zero at the points where the first order condition is met. We 

expand their method to address a multi-period dynamic pricing problem.  

Song and Xue (2007) study a multi-period pricing problem with a replenishment decision in each 

time period, using several alternative demand models including the MNL model. They show that the 

value function is concave in the market shares and that the optimal decision in each period consists of 

a not-to-order list, base stock levels, and target market shares. In our model, there is a single replen-

ishment opportunity at the beginning of the planning horizon and there are no opportunities for sub-

sequent replenishments within the transition period, due to the long lead time. 

Dong et al. (2009) use the MNL model to study dynamic pricing decisions for substitutable prod-

ucts with a single selling season. As in Song and Xue (2007), they consider market share as decision 

variables. They identify inventory scarcity and product quality difference as the two key driving 

forces for the optimal prices. They assume product quality to be constant and show that in the ab-

sence of inventory scarcity, dynamic pricing is unnecessary.  Suh and Aydin (2009) consider a simi-

lar problem, focusing on the analytical insights on the effect of the remaining time and a product’s 

                         
1 There has been previous research on revenue management with diminishing product values, but not 
with MNL demand (for example, Zhao and Zheng 2000, Su 2007, Aviv and Pazgal 2008). 

 6



own stock level, as well as the substitute product’s stock level on pricing. They too assume that the 

inherent product quality is constant over time and thus the changing price of a product can be attrib-

uted entirely to the scarcity of this product, or the substitute product, or both. In contrast, we show 

that the optimal prices of the two successive product generations exhibit time-dependent behavior 

even in the absence of the inventory scarcity effect. We derive a recursive formula of the optimal 

prices for any given time and inventory and examine how the replacement of one generation of prod-

uct by the other affects the optimal pricing decisions. In particular, we find that when we exclude 

other factors such as inventory scarcity and competition, the inter-generational replacement causes 

the prices of both products to decrease initially, followed by a gradual price recovery; this behavior is 

driven by the time-varying valuation of the two products in the transition. Furthermore, we examine 

how certain product or market characteristics such as the speed of the product transition, the speed of 

product obsolescence, and the customers’ price sensitivity affect the optimal pricing decision. 

Other papers related to our work include Kornish (2001), who studies the pricing problem for a 

monopolist with frequent product upgrades but sells only the latest generation of product in any pe-

riod, and Ferguson and Koenigsberg (2007), who use a linear aggregate demand model to derive the 

optimal pricing and stocking decisions when a company sells the newly-replenished units in the pres-

ence of left-over units from last period. Goettler and Gordon (2009) study the dynamic pricing and 

investment decisions for a product that competes in a duopoly with a MNL demand model. Xu and 

Hopp (2004) consider a pricing problem for a single product with one or multiple retailers and derive 

the equilibrium pricing policies for the retailers. In this paper, we study the centralized pricing deci-

sion, i.e., a company that sells two generations of products and thus has to maximize the total ex-

pected profit from the two products. 

3.  Problem Description and Demand Model 

We present a dynamic programming model that addresses the pricing decisions for a product upgrade 
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during the transition period of length T. We make the following assumptions: 

(i)  The transition from the old product to the new one starts at time 0 and is completed within 

time T; thus by time T the demand of the old product has become negligible.  

(ii)  There is no option for inventory replenishment during the period [0, T].  

Given the above, we solve for the optimal prices for the old and new products during the transi-

tion period [0, T] as a function of both time and inventory. The justification for (ii) is that the replen-

ishment time is long relative to the transition period.  

We adopt the Multinomial Logit (MNL) consumer choice model, whereby a customer chooses 

one option among a set of alternatives. In this case, the options are the old product, the new product, 

and no purchase. Assume that a customer’s utility of purchasing product i (i=1 refers to the old prod-

uct and i=2 refers to the new product) at time t is iiiii rgtatru ε+−= )()(),( , where  is the selling 

price of product i, is the disutility of paying  and  is the time-varying attribute(s) that 

affects the customer’s utility. We also assume that a customer’s utility of not purchasing any product 

at time t is 

ir

)( irg ir )(tai

00 )( ε+tu . If the disturbances iε , 2,1,0=i  are independent and identically distributed 

Gumbel random variables with distribution function , the MNL model gives the prob-

ability that a customer purchases product i at time t: 

xeexF
−−=)(

,2,1),( )()()()()(

)()(

02211
=

++
= −−

−

i
eee

et turgtargta

rgta

i

ii

rρ  

where is the price vector; then the probability of no-purchase at time t is ),( 21 rr=r

),(),(1),( 210 ttt rrr ρρρ −−=
 
(McFadden 1973). By using the same )(⋅g  function for both products, 

we are assuming that a customer’s disutility toward price, or equivalently the utility toward money, is 

the same for both products. The no-purchase option allows us to explore the pricing problem in a 

monopolistic situation, as well as in a competitive market. In the monopoly case, we interpret the no-

purchase utility as the customer’s utility of not obtaining any product; in the case with competition, 

the no-purchase utility equates to the customer’s reservation utility for other market options (buying 
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a competitor’s product) or not buying any product, whichever is higher. We consider both time-

invariant and time-increasing .  )(0 tu

Economists developed the MNL model to describe an individual’s choice behavior when facing a 

set of alternatives. Melnikov (2001) introduces time-related attributes to the choice model to model 

the inter-temporal demand substitution in computer and printer products. In this paper, we introduce 

an attribute term  to characterize the time-varying customer preference for the old and new 

products. As customers shift their preference from the old product to the new one, the impact on de-

mand is reflected through an increase in  and a decrease in .  

)(tai

)(2 ta )(1 ta

Existing OM papers that use the MNL model often assume constant  and , and ia 0u ii rrg =)(  

throughout the planning horizon. In order to capture the unique dynamics in product transition, we 

allow for time-dependent  and , and use a more general . Realistically, the utility 

function may depend strongly on factors other than time and price such as the advertising effort or 

complementary product offerings. We do not differentiate these factors and treat them as either a 

constant term (if they do not vary with time) in , or simply another generic force that contrib-

utes to the time trend in .  

)(tai )(0 tu )( irg

)(tai

)(tai

Assumption 1. We assume that customer arrival is a homogeneous Poisson process with rate λ . 

Hence the old and new products have Poisson demand with time-varying rates 

   2,1),(),(
)()()()()(

)()(

0
=

++
== −−

−

i
eee

ett
turgtargta

rgta

ii jjii

ii

λλρλ rr    (1) 

and the no-purchase rate is  

  )).,(),(1(),( 210 ttt rrr ρρλλρ −−=
    

(2) 

This demand model is relatively simple and intuitive. The fact that the time factor and the price 

factor are separable within each exponent term leads to significant analytical tractability.  In addition, 

it generates a logistic demand pattern that is often observed in practice. For example, when 

 9



tta 0125.05)(1 −= , , = 0, tta 0125.0)(2 = )(0 tu rrg =)( , 321 == rr  and 1.0=λ , the above demand 

model generates a demand pattern shown in Figure 1. 
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Figure 1: Demand Pattern under Equation (1) 

We observe from Figure 1 that, for a time-invariant reservation utility , the total demand 

rate of the two products drops to the lowest level when the two products have equal market shares. 

This represents a period of time when the customers’ preference for the old product is significantly 

reduced by the introduction of the new product, while the new product itself has not yet gained full 

acceptance from the customers. As a result, customers cannot decide which product to buy and thus 

are more likely to resort to the no-purchase option. 

)(0 tu

When a product stocks out, a customer then chooses between buying the other product and the 

no-purchase option. Thus, the purchase probabilities when a particular product runs out are:  

)()()(

)()(

0
),( turgta

rgta

ii ee
etr

ii

ii

+
= −

−

ρ  and )()()(

)(

0 0

0

),( turgta

tu

i ee
etr

ii +
= −ρ , ],0[.2,1 Tti ∈=    (3) 

Implicitly, we assume that running out of a product is equivalent to setting an infinitely high 

price for that product (i.e., ∞=
∞→

)(lim rg
r

). Consequently, its demand is proportionally split between 

the other product and the no-purchase option. This also follows directly from the Independence from 

Irrelevant Alternatives (IIA) property of the MNL model, which states that the ratio of any two 

choices within a choice set is not affected by the presence of other choices. In this case, IIA implies 

that ),(/),(),(/),( 00 tttrtr iiii rr ρρρρ = . 
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4.  Optimal Dynamic Prices 

In the analysis that follows, we use the “baby Bernoulli process” approximation of the Poisson proc-

ess (Gallager 1999) to discretize the finite planning horizon, similar to the approach taken in Bitran 

and Mondschein (1997). We choose the length of each discrete time period such that the probability 

of more than one demand arrival in each time period is nearly zero. We then assume that there can be 

at most one demand in each time period. Given this time period, we let T denote the number of time 

periods in the planning horizon. Then we rescale the parameterλ  so that within each time period t, 

the probability of no customer arrival is 1-λ , and the probability of exactly one customer arrival 

isλ . Therefore, for each time period t, ( , ) ( , )i it tλρ λ=r r is the probability that a demand occurs for 

the old product (i=1) or for the new product (i=2); the probability of a customer arrival and no pur-

chase is ),(0 trλρ . 

Let be the value-to-go at the beginning of period t if the company has units of old 

product (i=1) and new product (i=2), and makes optimal price decisions at t and thereafter.   

),( 21 xxVt ix

We define  recursively: ),( 21 xxVt

    
 ),,(max),( 2121 xxhxxV tt r

r
=

0,         ),()1),((                             
))1,()(,(                             

)),1()(,(),,(where

212110

21122

2111121

>∀−++
−++
−+≡

+

+

+

xxxxVt
xxVrt

xxVrtxxh

t

t

tt

λλρ
λ
λ

r
r

rr
  (4) 

0          ),0()1),((                            
))1,0()(,(),0,(

22120

212222

>∀−++
−+≡

+

+

xxVtr
xVrtrxh

t

tt

λρλ
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   (5) 

0            )0,()1),((                            
))0,1()(,()0,,(

11110

111111

>∀−++
−+≡

+

+

xxVtr
xVrtrxh

t

tt

λρλ
ρλr

   (6) 

The terminal value is the salvage value of products left over after T: 2211211 ),( xsxsxxVT +=+  

where  is the unit salvage value of a product at the end of the transition. The salvage value for the 

new product reflects the value depreciation of the new product. It does not necessarily imply that the 

is
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company will salvage any left over units of the new product. Presumably any leftover new product is 

just kept in inventory and sold later.  Hence the value of the inventory at T is the replacement value 

for the new product, i.e., the manufacturing cost for the new product at time T.  Let the production 

cost for product i at time 0 be . Then the salvage value  could be , reflecting no cost reduction 

over T, or a fraction of , reflecting cost reduction from learning. 

ic 2s 2c

2c

The problem is to find the optimal prices  and  for each  combination. The value 

function  as defined in equations (4)-(6) is not jointly concave or quasi-concave in pric-

es. Hanson and Martin (1996) give a counter example to the joint quasi-concavity. To circumvent 

this problem, Song and Xue (2007), as well as, Dong et al. (2009) use an inverse demand function of 

the MNL model and show that the value function becomes jointly concave in the market shares. In 

this paper, we follow the Aydin and Porteus (2008) approach to show that, even though joint quasi-

concavity does not hold, the first-order condition yields a unique price vector, and that it is optimal 

for the problem we consider. In the following, we first solve the first-order necessary condition, and 

then show that it is also sufficient. 

1r 2r ),,( 21 xxt

),,( 21 xxht r

Solving the first-order condition for equation (4), we obtain:  

ijixxVr
r

txxVr
r

t
t tii

i

i
tjj

i

j
i ≠==Δ−

∂
∂

+Δ−
∂

∂
+ ++ ,2,10)),((),( )),((

),(
),( 211211

rr
r ρρ

ρ    (7) 

where ),1(),(),( 2112112111 xxVxxVxxV ttt −−≡Δ +++ and )1,(),(),( 2112112112 −−≡Δ +++ xxVxxVxxV ttt are 

the marginal value of inventory for the old and new product respectively.   

From equation (1), we obtain  

(8)               )('
),(

    and  )('1)-(
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∂

∂
=

∂
∂ rrr

 Substituting (8) into (7) and treating equation (7) as two linear equations with two unknowns 

, we can solve equation (7) and rewrite the first order condition as:    2,1),,( 211 =Δ− + ixxVr tii
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ρ

ρ
−−−
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(9) 

Assumption 2.  The disutility function )(⋅g  is continuous and twice differentiable and satisfies 

. 0)('/)('')(' >+ iii rgrgrg

Assumption 2 is a technical assumption that is satisfied by many increasing utility functions.  

Lemma 1. Under Assumption 2, we have 

i) For any given ,  is strictly quasi-concave in ir ),,( 21 xxht r jr ],0[,0,0 21 Ttxx ∈≥≥∀  and 

 , 1, 2,   i j i j= ≠ .

ii) The cross price effect 0),,( 21
2

=
∂∂

∂

ji

t

rr
xxh r  whenever 0),,(

1

21 =
∂

∂
r

xxht r  and 0
),,(

2

21 =
∂

∂
r

xxht r
. 

Proposition 1. Let  solve the first order condition of equations (4)-(6) where 

 . Then it is the unique maximizer of 

)ˆ,ˆ(ˆ 21 rr=r

),0[ˆ,ˆ 21 ∞∈rr ),,( 21 xxht r ].,0[,0,0 21 Ttxx ∈≥≥∀  

Therefore, we can obtain the optimal solution by solving the first-order condition in equation (9) 

Economists often assume a quasi-linear utility function to simplify problems and obtain tractable 

solutions by eliminating the effect of initial wealth (Mas-Colell et al. 1995). In the analysis that fol-

lows, we assume that the customers’ utilities are linear with respect to money, i.e., the disutility func-

tion  is a linear function. )( irg

 Assumption 3.  ii rrg β=)(  where 0>β . 

With Assumption 3 we can reduce condition (9) to 

),(
1),(

0
211 t

xxVr tii rβρ
=Δ− +       (10) 

The term  is the marginal gain from selling a unit of product i at time t. Intuitively, 

the optimal price is set such that the company is indifferent between selling an old and selling a new. 

Solving the above equation for  (see proof of Proposition 2), we obtain: 

),( 211 xxVr tii +Δ−

ir
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)}(1{1),(),,( ),(1)()(),(1)()(
21121

* 21102110 xxVtutaxxVtuta
tii

tjjtii eeWxxVxxtr ++ Δ−−−Δ−−−
+ +++Δ= ββ

β  
where W is the Lambert’s W function, i.e., W(x) solves the equation  for w as a function of 

x. We can do a similar analysis for the cases when one of the products runs out. Substituting the op-

timal prices into equations (4)-(6) yields a recursive formula for computing the value function 

. We summarize these results in Proposition 2.  

xwew =

),( 21 xxVt

Proposition 2. Under Assumption 3, the optimal price of the old and new product at time t for a giv-

en inventory level is ),( 21 xx

)}(1{1),(),,( 21121
* ZWxxVxxtr tii ++Δ= + β

       (11) 

where  
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and we obtain  using the following recursive equations: ),( 21 xxVt

2211211 ),( xsxsxxVT +=+       (12) 

  )(),(),( 21121 ZWxxVxxV tt β
λ

+= +      (13) 

We note from (13) that the marginal value of time is 

( )ZWxxVxxVxxV ttt β
λ

=−≡Δ + ),(),(),( 2112121 .  We can now express the optimal prices as: 

βλ
1),(1),(),,( 2121121 +Δ+Δ= + xxVxxVxxtr ttii    (14) 

Thus the optimal price is determined by the marginal value of inventory and the marginal value of 

time. Note that the factor λ/1  in the second term represents a conversion to per unit price.  

In addition, comparing equations (10) and (11), we obtain  
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Therefore, we can interpret the term  as the ratio of the company’s market share against 

the competition at time t, assuming we follow the optimal pricing policy.  

)(ZW

Heretofore we have not made any specific assumptions on , the time-varying attribute. In 

fact, the solution given in Proposition 2 applies to any two substitutable products with time-varying 

attributes and sold by the same company.  To derive structural properties of the optimal dynamic 

prices in the context of a product transition, we will make some additional assumptions regarding 

 and . In what follows, we examine in a progressive manner the various factors and dy-

namics that affect the optimal prices of the two products during the transition. Throughout this paper, 

we use both analytical and numerical examples to develop the insights on how certain dynamics and 

factors effect price. 

)(tai

)(tai )(0 tu

5. Factors and Dynamics Affecting the Optimal Price 

We start with a simple base case. We let both  and  be constant, and consider infinite sup-

ply of inventory. Corollary 1 follows directly from equation (11). 

)(tai )(0 tu

Corollary 1. If , , ii ata =)( 00 )( utu = ∞→21, xx ,  the optimal prices are constants throughout the 

planning horizon:  )).(1(1
202101 11* suasua

ii eeWsr ββ

β
−−−−−− +++=  

This is consistent with findings from existing dynamic pricing literature with unconstrained sup-

ply and time-invariant attributes. The base case does not necessarily correspond to any realistic situa-

tion. However, we can infer the various factors and dynamics affecting the optimal price by compar-

ing the optimal solution under more complex cases with the base case in Corollary 1. 

In Sections 5.1-5.3, we assume ample inventory and thus the effect of inventory scarcity is ab-

sent. In Sections 5.4 and 5.5, we discuss the cases of limited inventory. 

5.1 Effect of Product Replacement  

The function  represents the change of customers’ attitude toward a product after the new prod-)(tai
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uct introduction, independent of the products’ prices. We expect  to vary over the transition pe-

riod, and it could take on various functional forms.  

)(tai

Assumption 4.  We assume that  is given by )(tai ktata −= 01 )(  and ktta =)(2  where ,  are 

known constants. 

0a 0>k

As justification for this assumption, we consider the behavior of the market shares for the two 

products. Under the MNL model, this ratio at time t is  where 

. Given that  is linear, the market share ratio in the MNL model has the 

same form as for the Fisher and Pry (1971) model, for which the market share of the old and new 

technologies (products) is 

)()(
12

12)(/ tataeG −= rρρ

))()(( 12)( rgrgerG −−= )(tai

( )02 t te α − where t0 is the time at which the new and the old have equal mar-

ket shares, and α is a constant that signifies the rate of substitution. We can also show that Assump-

tion 4 is consistent with the Norton and Bass (1987) model: If we assume that the old and new prod-

ucts have the same customer population, then the market share ratio in the Norton-Bass model differs 

from the MNL model by a constant. Both the Fisher-Fry model and the Norton-Bass model perform 

well on empirical data. Thus, we contend that the linear assumption of  is reasonable. )(tai

As shown in Figure 1, Assumption 4 generates a logistic demand pattern commonly observed 

during a product transition. The new product will, over time, replace the old product. The magnitude 

of k represents the rate of the transition, i.e., how quickly the new product replaces the old; it may 

depend on multiple factors including, but not limited to, product capability, timing of the new prod-

uct introduction, marketing effort and macroeconomic environment. For example, Intel generates a 

PTI score for each transition based on the assessment of these constituent factors. The resulting PTI 

score is a direct indicator of the transition rate. According to Jay Hopman (Hopman 2005),  

“If all vectors are scored down the middle, the product transition should be expected to unfold at a rate on par 

with the average of past transitions. Hotter scores predict a faster transition, colder scores a slower transition.” 
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The Intel approach includes price and external competition, along with many other factors in the PTI 

scores. In our model, prices are decision variables and we model external competition implicitly 

through . We consolidate all other factors into k.  )(0 tu

The following proposition highlights the effect of on the optimal prices.  )(tai

Proposition 3.  Under Assumptions 3 and 4, if the no-purchase utility does not vary with time, i.e., 

, then 00 )( utu =

 i) If , decreases in t 0, 21 =∞→ xx ),,( 21
*

1 xxtr ],0[ Tt∈∀  

ii) If , increases in t ∞→= 21 ,0 xx ),,( 21
*

2 xxtr ],0[ Tt∈∀  

iii) If , decreases in t for ∞→21, xx ),,( 21
* xxtri ],0[ tt∈  and increases in t for ],[ Ttt∈ ,  where 

k
ssat

2
)( 120 −+

=
β . 

As inventory increases, the marginal value of inventory ),( 211 xxVti +Δ approaches the salvage 

value . Thus, from equation (14), the optimal price is solely determined by the marginal value of 

time . For case i), is an increasing function of , which decreases line-

arly in time by assumption. Therefore, the optimal price of the old product decreases over time. Simi-

larly, in case ii), is an increasing function of , which increases in t. Therefore the 

optimal price of the new product increases over time.  When both products are available, the optimal 

price behavior is more complex. In case iii), 

is

),( 21 xxVtΔ ),( 21 xxVtΔ )(1 ta

),( 21 xxVtΔ )(2 ta

),( 21 xxVtΔ is an increasing function of 

 where  and are constants. Thus the price trend depends on 

which term dominates.  

0201 )()( utauta BeAe −− + 11 seA β−−= 21 seB β−−=

We illustrate the behavior of case iii) graphically in Figure 2. In this example, we assume the in-

ventory level to be (10,10) throughout the transition. This inventory level represents, for all practical 

purposes, an infinite amount of inventory since the maximum total expected demand for both prod-

ucts for the planning horizon is 10=Tλ . We observe from the optimal demand curve that the new 
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product gradually replaces the old as the dominating product. The no-purchase option reaches its 

highest level midway through the transition when neither product dominates. 

Parameter 
  Values 
T 100 
a0 4 
k 0.06 
β 1 
λ 0.1 
u0 0 
s1 0.5 
s2 2.7 
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Figure 2: Optimal Prices and Demand for Given Inventory Level (10,10) 

Comparing this with the base case, we see that the price trend is due to changes in . Ini-

tially, the new product is at its infancy and the old product offers the highest utility to customers (i.e., 

the term dominates over ); the competition is essentially between the old product 

and the non-purchase option. As t increases, customer preference for the old product decreases as it 

approaches obsolescence. The overall impact is that the no-purchase option becomes relatively more 

attractive over time before the new product gains strong hold. Therefore, the optimal pricing strategy 

during the first half of the transition is to decrease price in order to compete with the no-purchase 

option. Later, the new product replaces the old product to become the main product that competes 

with the no-purchase option, i.e., the term  dominates over . As the new product’s 

attractiveness increases with time, the company ought to increase price to maximize revenue. There-

fore, during the transition, the company faces higher risk of losing to customers’ other options. The 

price dip during the transition (Figure 2) is hence a strategy to counteract that risk. 

)(tai

01 )( utaAe − 02 )( utaBe −

02 )( utaBe − 01 )( utaAe −

In practice, we rarely observe price increases for technology products. Therefore, the price trend 

in Proposition 3(iii) and Figure 2 is an isolated effect of the replacement between two generations of 

products. Later we show that external competition and/or the effect of inventory scarcity is likely to 

create a downward pricing trend. 
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5.2 Effect of External Competition 

In the demand model from Section 3, the no-purchase option may represent different customer 

behaviors. In the case of a monopoly, a customer’s no-purchase utility, , represents his/her prefer-

ence for not getting any product, old or new. Such preference may change over time. For example, 

technology development may make it easier (or harder) over time for a customer to get by without 

buying either product. In a competitive market, a customer’s no-purchase utility represents the cus-

tomer’s preference for the best outside option (competitive product), or not buying any product (e.g., 

using its legacy system). If the competitor continuously improves its product attractiveness, whether 

through enhanced features or lower prices, the value of may increase over time. Therefore, a time-

varying  allows us to model the impact of these various factors on the optimal pricing strategy dur-

ing a product transition. 

0u

0u

0u

The discrete choice model employed in this paper depends critically on the ability to estimate 

. Companies often study their customer base through focus groups or surveys, as well as com-

petitors’ product offerings to help them better understand customers’ preference for other options 

(including buying from competition and not buying any).  As with , the no-purchase option may 

depend on factors other than time and we treat these factors as either a constant term or a generic 

force that contributes to the time trend in . 

)(0 tu

)(tai

)(0 tu

A major difficulty with statistically estimating the parameters in the MNL demand model includ-

ing λ and  is that, given the sales data, it is impossible to tell if a period with no sale is due to no 

customer arrival or due to no purchase upon arrival. A recent paper by Vulcano et al (2009) ad-

dresses this problem using an expectation-maximization (EM) method which maximizes the expected 

log-likelihood function conditioned on the current parameter estimates. Specifically, one can use the 

observed sales in a fixed time horizon, plus the estimated number of arrivals from the periods with 

0u
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no sales observation (conditioned on current parameter estimates), divided by the total number of 

time periods during that time horizon to form the next estimate of λ.  In our model, both  and 

may vary with time, which requires us to estimate additional parameters in the EM method. For 

example, suppose Assumptions 3 and 4 hold, and 

ia

0u

tkutu cc +=)(0 . Then the log-likelihood function 

will have time as an additional independent variable, and parameter terms including λlog , β , k, 

, and . Nonetheless, the same technique in Vulcano et al (2009) should extend to our problem. ck cu 0a

From Proposition 2, it is easy to see that all else equal, the optimal price at time t for each prod-

uct decreases in . )(0 tu

Corollary 2.  Under Assumption 4, )),(),()(,(
)(
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∂
. Thus the company’s total market share decreases in  

. The optimal prices also decrease in  and the rate of decrease is higher if 

the company has a larger total market share at time t. 

)(0 tu

0,],,0[ 21 ≥∈∀ xxTt )(0 tu

Therefore, when the no-purchase utility  increases (decreases) over time, the optimal prices 

of both the old and new products experience downward (upward) pressure, relative to the case of a 

constant . Figure 3(a) shows the optimal prices when changes linearly with time, i.e., 

 with . Other parameters are the same as in Figure 2. In Figure 3(b), we show 

the total market share of the two products under the optimal prices. We observe that the widening of 

the price gaps in Figure 3(a) correlates with the gaps in market share in Figure 3(b). 

)(0 tu

)(0 tu 0u

tkutu cc +=)(0 0=cu

The time-increasing  reduces the company’s market share and limits the company’s ability to 

increase price. Indeed, a price increase is rare in practice for technology products. It is reasonable to 

attribute this phenomenon to a time-increasing . As design and production technology advances, a 

0u

0u
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customer’s outside option comes in the form of a cheaper or better product, prohibiting any price in-

crease. Although rare in practice,  may decrease in time occasionally. For instance, when the 

competitors are struggling with survival due to either internal or external forces, the customer’s out-

side option might become less favorable. When this is the case, the optimal prices of the old and new 

products are both pushed upward due to the time-decreasing . 

)(0 tu
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(a)        (b) 
Figure 3: Optimal Prices for Linearly Changing  )(0 tu

To summarize, the changes in the no-purchase utility over time causes the prices of the old and 

new products to move in the opposite direction to the changes in . )(0 tu

5.3  Effect of Substitution  

A third factor affecting price arises from substitution between the old and new products. The opti-

mality condition in equation (10) requires the company to be indifferent between selling the two 

products; thus when the price of one product decreases, the price of the other should decrease as well. 

Therefore, price-based substitution of the two products causes the optimal prices to move together. 

We also see this from equation (14): The prices of the two products are driven by , the 

marginal value of inventory and , the marginal value of time. When inventory is abun-

dant, the former converges to , thus the prices of the two products move in parallel.  

),( 211 xxVti +Δ

),( 21 xxVtΔ

is

Corollary 3.  If , . ∞→21, xx 12
*

1
*

2 ),,(),,( sstrtr −=∞∞−∞∞

 21



We observe this result in both Figures 2 and 3(a).  

5.4 Effect of Scarcity 

When supplies are limited, the optimal price behavior, as well as the resulting demand, has quite dif-

ferent characteristics. Figure 4 demonstrates the scarcity effect on optimal prices. We hold both 

and  constant to remove any time trend caused by the replacement effect or external com-

petition. Other parameter values are as in Figure 2. The inventory level of 10 represents abundant 

supply and 1 scarce supply. We plot the price gaps when a product’s inventory is scarce versus plen-

ty while keeping inventory of the other product unchanged. For example,  

measures the impact of scarcity of the new product on its optimal price. This curve sits above zero, 

implying that for any given time t, scarcity of a product increases its own price; we term this the 

“within-product” impact of scarcity. The time trend of this curve shows that scarcity causes a de-

creasing trend in the optimal price. Similarly, 

)(tai )(0 tu

)10,10,()1,10,( 22 trtr −

)10,10,()10,1,( 22 trtr −  measures the “cross-product” 

impact of scarcity.  
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Figure 4: Impact of Scarcity on Optimal Prices 

Examining the curves in Figure 4, we observe that the “within-product” scarcity effect is consistent.  

That is, scarcity itself increases the optimal price relative to ample inventory at any given time t. But 

for a “fixed” level of scarcity, the optimal price declines over time as the selling window becomes 

shorter. In the pricing literature, price decline over time due to the scarcity effect has been widely 
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studied (e.g., Bitran and Mondschein 1997, Dong et al. 2009). The “cross-product” impact (the 

marked curves) indicates that scarcity of one product may increase or decrease the price of the other 

product. The time trend due to “cross-product” scarcity is not consistent, and in some cases, is not 

even monotone, as shown in the curve )1,10,()1,1,( 22 trtr − . This non-monotonic pattern is due to a 

combination of the substitution between the two products and external competition, which we will 

explain in detail in the next section. We also observe similar behavior in the old product. 

These four dynamic factors (replacement, external competition, substitution and scarcity) are crit-

ical for understanding the optimal pricing strategies over time. One or more of these dynamics can 

become the dominant force that affects the shape of the price path under specific conditions. We 

summarize the impact of each factor in Table 1.  

Dynamic Factors Impact on Optimal Prices 

Replacement The prices for both old and new product decrease initially, and then increase, exclusive 
of the impact from inventory 

Scarcity At any time, less inventory implies a higher price.  But less inventory also results in a 
steeper price decline over time.  

Substitution The prices of the old and new product move in the same direction, all else being equal. 

External  
Competition 

Greater external competition leads to a lower price for both old and new product.   
As we expect external competition to increase over time, this results in increasing 
downward pressure on both prices. 

Table 1: Impact of the Key Dynamics on Optimal Prices 

5.5 Effect of Inventory 

As products are sold, the inventory level for each product changes, which affects the optimal 

prices. When either  or , the relationship between and is as expected. Namely, un-

der Assumption 4, if ,  is non-increasing in  for 

01 =x 02 =x *
ir ix

0=jx ),(*
ii xtr ix 2,1, =ji , ji ≠ . However, in the 

presence of the other product, it is not clear how the inventory level affects the optimal price. Nu-

merically, we find that each product’s price still decreases with its own inventory level (Figure 5a). 

The impact of inventory on the optimal price of the other product is more intriguing (Figure 5b).  

The vertical axis is the optimal prices of the new (Figure 5a) and old (Figure 5b) product at time t 
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= 50. Other parameters are the same as in Figure 2 except for the inventory levels. In Figure 5b, 

when the old product inventory is low (high), its optimal price decreases (increases) as the new prod-

uct inventory increases. This pattern arises from multiple dynamics that are at play. The two products 

compete with the outside option; thus there is pressure to decrease price when the total inventory of 

the two products goes up. In the mean time, there is competition (substitution) between these two 

products. Increased inventory of the new product increases the risk of excess for the new product and 

calls for a price increase of the old to make the new appear more attractive. With more old product 

(e.g. ), the competitive nature of the two products are more pronounced as it becomes more 

likely that the company has to make a choice of which product to sell in the transition period; there-

fore the dominating impact is a price increase for the old product when the inventory of the new 

product increases. 
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Figure 5: Optimal Price vs. Inventory   

We have already seen in Figure 4 that the effect of scarcity on the other product’s price is not 

monotonic. This can be explained again by the interplay of two competing forces: First, the two 

products together are competing against the outside option (external competition), thus the scarcity of 

the company’s product (old or new) should cause the price to decrease over time if no sales are made. 

Second, the customers are making price-based substitution between the two products (substitution 

effect). As a result, scarcity of one product reduces the inventory pressure for the other product, caus-
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ing the price of the other product to increase over time.  

5.6  Impact of the Parameters on Optimal Prices 

We let , 100=T 1.0=λ , and . We vary the value of the price sensitivity parameter β, the 

transition rate k, and the salvage value  for each product. Specifically, we let 

40 =a

is 2,1,5.0=β  respec-

tively to represent the case of low, medium, and high price sensitivity. We let , 0.12 and 

0.24 to indicate slow, regular, and fast transitions. For the initial production cost at time zero, we 

consider two cases:  i) , and ii) 

06.0=k

3,2 21 == cc 2,3 21 == cc  to indicate respectively, an increased and 

decreased cost from the old to the new product. For the salvage value, we let the old product to be 

10%,  25%, and 50% of its original production cost, the new product to be 50%, 70%, and 90% of its 

original cost (the new product retains a better percentage value given the earlier explanation of sal-

vage values). The different salvage values represent fast, regular, and slow speed of product obsoles-

cence. Table 2 summarizes the parameters used. For each set of parameters, we compute the optimal 

dynamic prices for any given inventory and time. In this section, we illustrate results from the nu-

merical study for the case of abundant inventory. 

β k ( ) 21, cc 1s  2s  

0.5, 1, 2 0.06, 0.12, 0.24 (2,3) and (3,2) 1  11 5.0,25.0,1.0 ccc 222 9.0,7.0,5.0 ccc  

Table 2: Parameters for Numerical Examples 

We found that the optimal product price increases in its salvage value (equivalently, decreases 

with its own speed of obsolescence) due to lower overage cost, but may decrease in the other prod-

uct’s salvage value due to the substitution effect. In addition, we make some general observations 

regarding the effect of the transition rate k and the price sensitivity parameter β and illustrate them in 

the following examples. 

In Figure 6 we show the price and demand behavior as it depends on the speed of the product 

transition, when 2,1 1 == cβ , , 32 =c 11 25.0 cs =  and 22 9.0 cs = . We illustrate the price path for the 
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new product only as that for the old is similar. A faster transition leads to higher prices for both 

products. The price increase of the new product reflects its desirability in a fast transition. Although 

the price of the old product follows a similar pattern as the new, its revenue impact is not significant 

because the demand of the old product, at the time of the price increase, was already quite low.   

0 50 100
0

5

10

15

20

25

timeop
tim

al
 p

ric
e 

fo
r n

ew
 p

ro
du

ct

 

 

k=0.06
k=0.12
k=0.24

0 50 100
0

0.2

0.4

0.6

0.8

1

time
de

m
an

d
 

 

k=0.06, old
k=0.06, new
k=0.12, old
k=0.12, new
k=0.24, old
k=0.24, new

 
(a)      (b)     

Figure 6: Optimal Price vs. Transition Rate 

As the price sensitivity parameter β increases, the optimal prices exhibit much smaller changes over 

time, as shown in Figure 7 (with parameters 2,06.0 1 == ck , 32 =c , 11 25.0 cs =  and ).  22 9.0 cs =
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Figure 7: Optimal Price vs. Price Sensitivity 

Recall from the discussion in Section 5.1 that the price dip during a transition is due to customers’ 

preference shift from the old product to the new product, i.e., changes in . In the transition, the 

company faces higher risk of losing business because the customers perceive the old product as be-

coming obsolete and the new product has yet to prove itself being a superior option.  The price dip 

(more specifically, a gradual decrease followed by a gradual increase) helps the company to counter-

)(tai
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act this risk.  Therefore, the less price-sensitive the customers are (smaller β), the more price change 

is necessary to overcome that. This can also be seen mathematically from equation (11). When the 

supply is ample,
 

)](1[1),,(* ZWstr ii ++=∞∞
β

 where . W(Z) 

has higher values at time 0 and time T, and lower values in between. As β increases, the price dip be-

comes smaller.   

202101 1)()(1)()( stutastuta eeZ ββ −−−−−− +=

6. Optimal Initial Inventories 

Proposition 2 gives a simple recursive algorithm for finding the value function using equations (12) 

and (13). We can then use the value function to easily determine the optimal initial inventories, pro-

vided we are given a procurement cost for each product.  If the planning horizon is T time periods, 

then the largest reasonable initial inventory is T units for each product, as we can sell at most one 

unit per time period by assumption. Thus, we need to compute  for 1 2( , )tV x x 1 2, , [0, ]x x t T∈ , which 

is of order . If T is large, the computation burden may become excessive.  )( 3TO

In Table 3 we report the optimal initial inventories for various parameter combinations. The other 

parameter values are the same as in Section 5.6.

c1=2, c2=3 c1=3, c2=2 c1=2, c2=3 c1=3, c2=2 Case k s1 s2 x1 x2 x1 x2
Case k s1 s2 x1 x2 x1 x2

1 0.06 0.1c1 0.5c2 1 3 0 4 10 0.12 0.1c1 0.5c2 1 6 0 8 
2 0.06 0.1c1 0.7c2 1 3 0 5 11 0.12 0.1c1 0.7c2 1 7 0 9 
3 0.06 0.1c1 0.9c2 1 4 0 6 12 0.12 0.1c1 0.9c2 1 9 0 10 
4 0.06 0.25 c1 0.5c2 1 3 0 4 13 0.12 0.25 c1 0.5c2 1 6 0 8 
5 0.06 0.25 c1 0.7c2 1 3 0 5 14 0.12 0.25 c1 0.7c2 1 7 0 9 
6 0.06 0.25 c1 0.9c2 1 4 0 6 15 0.12 0.25 c1 0.9c2 1 9 0 10 
7 0.06 0.5c1 0.5c2 2 2 1 4 16 0.12 0.5c1 0.5c2 1 6 0 8 
8 0.06 0.5c1 0.7c2 2 3 1 5 17 0.12 0.5c1 0.7c2 1 7 0 9 
9 0.06 0.5c1 0.9c2 2 4 1 6 18 0.12 0.5c1 0.9c2 1 9 0 10 

Table 3: Optimal Initial Inventories 

Observations from Table 3 are consistent with our intuition: The optimal initial inventory for a 

product is non-decreasing in its own salvage value (for example, compare cases 1, 2 and 3).  This is 

not surprising as the faster the speed of obsolescence, the less initial inventory the company should 
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keep for that product. However, it may decrease in the salvage value of the other product due to the 

substitution effect (compare cases 1, 4 and 7 under “cost-up”). For a faster transition, we need a lar-

ger initial inventory of the new product and less initial inventory for the old product. When the inter-

generational cost decreases, we stock less of the old product and more of the new product relative to 

the case when the inter-generational cost increases. We have run additional cases to confirm that 

these findings remain the same and we include them in the online Appendix. 

Dong et al. (2009) propose a single-variable approximation to the problem for obtaining the ini-

tial inventory. We extend their method to incorporate the replacement effect. Specifically, we con-

struct a pseudo product that incorporates the time-varying attributes, the costs, and the salvage values 

of both products: , )ln()( )()( 21 tata eeta += i
i

icc θ∑
=

=
2,1

 and i
i

iss θ∑
=

=
2,1

 where 
2211
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ee
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β
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+
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and Tdttaa
T

ii /))((
0∫= . We then use equations (12) and (13) for the case of a single product to find 

the optimal inventory x  for the pseudo product and use xiθ  as the inventory for product i.  Table 4 

shows the results and performance of this heuristic method for the “cost-up” cases shown in Table 3.  

Optimal Heuristic Fixed Price  k s1 s2 x1 x2 x1 x2

Heuristic 
Performance old new 

Fixed Price 
Performance 

1 0.06 0.1c1 0.5c2 1 3 1 2 0.9961 3.60 4.70 0.8916 
2 0.06 0.1c1 0.7c2 1 3 1 2 0.9406 3.61 4.88 0.9140 
3 0.06 0.1c1 0.9c2 1 4 1 3 0.9696 3.61 4.92 0.9249 
4 0.06 0.25 c1 0.5c2 1 3 1 2 0.9953 3.68 4.70 0.9006 
5 0.06 0.25 c1 0.7c2 1 3 1 2 0.9407 3.69 4.88 0.9218 
6 0.06 0.25 c1 0.9c2 1 4 1 3 0.9696 3.69 4.92 0.9313 
7 0.06 0.5c1 0.5c2 2 2 1 2 0.9691 3.44 5.05 0.9309 
8 0.06 0.5c1 0.7c2 2 3 1 3 0.9810 3.44 4.89 0.9292 
9 0.06 0.5c1 0.9c2 2 4 1 3 0.9558 3.44 4.94 0.9385 
10 0.12 0.1c1 0.5c2 1 6 0 7 0.9942 3.12 7.29 0.7734 
11 0.12 0.1c1 0.7c2 1 7 0 8 0.9901 3.12 7.32 0.7701 
12 0.12 0.1c1 0.9c2 1 9 0 9 0.9970 3.12 7.44 0.7809 
13 0.12 0.25 c1 0.5c2 1 6 0 7 0.9888 3.23 7.28 0.7758 
14 0.12 0.25 c1 0.7c2 1 7 0 8 0.9850 3.23 7.32 0.7723 
15 0.12 0.25 c1 0.9c2 1 9 0 9 0.9922 3.23 7.44 0.7828 
16 0.12 0.5c1 0.5c2 1 6 0 7 0.9784 3.43 7.28 0.7797 
17 0.12 0.5c1 0.7c2 1 7 0 8 0.9753 3.43 7.32 0.7759 
18 0.12 0.5c1 0.9c2 1 9 0 9 0.9831 3.43 7.44 0.7858 
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Table 4: Performance of the Heuristic Method and the Fixed-Price Policy 

We define performance as the ratio of the value function evaluated at the heuristic initial inventory 

divided by the value function evaluated at the optimal initial inventories; in both cases, we assume 

we can follow the optimal pricing policy. We found that the heuristic is very effective in the ease of 

computation load and performance. In addition, we examine the value of dynamic pricing by evaluat-

ing the performance of a fixed-price policy where the initial inventories are set to the optimal level as 

in Table 3 but the prices of the two products are held constant through the transition period. We ob-

tain the optimal fixed prices through a two-variable search. The fixed prices underperform the opti-

mal dynamic pricing by 6% to 23%, depending on the parameters.  

7. Discussions and Future Research 

The main contribution of this research is to address the pricing problem in a special albeit ubiquitous 

industry context – inter-generational product transition. We solve for the optimal prices of the two 

generations of products for any given inventory level at any given time during the transition. We ex-

tend the existing literature on dynamic pricing for substitutable products to include time-varying de-

mand patterns, namely the replacement of the new product for the old product. We characterize the 

behavior of the optimal prices, as it is affected by several factors, including replacement, substitution, 

external competition, and scarcity. Lastly, we present a heuristic method for determining the initial 

inventories, extending from the approximation method by Dong et al. (2009).  Compared with the 

optimal initial inventory obtained through the enumeration method, the heuristic performs well and is 

very effective in reducing the computation load. 

We make several simplifying assumptions so that we can develop meaningful results and insights 

for the complicated real problem under study. We assume a stationary customer arrival process, but 

our model can be adapted to permit a time-varyingλ  to address seasonality or other demand cycles. 

In fact, the solution in Proposition 2 still holds with a time-varying λ . We address a dynamic pricing 
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problem with only two generations of products. In some instances there are multiple generations of 

products selling during the same time period. In that case, the MNL model allows an easy extension 

and we simply add more choices to the MNL model.  

In the examples we supplied, the new product is considered a better product and is on a steady 

path to replace the old product. For the problem context we focus on, this is mostly the case as the 

newer product is an upgrade version and typically has better features and performances. In practice, 

there are cases where the new product is not necessarily better due to design flaws or other issues. 

Nevertheless, the model and the solution given in Proposition 2 hold true for a more general case 

where the products have time-varying attributes and do not require  to change in any particular 

direction over time. However, the results derived in Sections 5 regarding the product replacement 

effect may change if the  has abnormal behavior. For instance, if drops sharply after some 

initial take off and never exceeds , the optimal prices will be dominated by the old product and 

the price trend would be similar to those we observe for a single product. In a worse case, the new 

product never takes off, but the mere presence of it causes the customers to believe the old product is 

becoming obsolete (i.e., does not increase much but  decreases regardless), the company 

may be forced to monotonically price down both products over time even in the absence of a time-

increasing . 

)(tai

)(tai )(2 ta

)(1 ta

)(2 ta )(1 ta

)(0 tu
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Online Appendix 
Proof of Lemma 1.  

i) 
From equation (1) and (8), we have 
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Similarly, we show that  is quasi-concave in . ),,( 21 xxht r 2r
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Substituting equation (8), (A-4), and(A-5) into the above and simplify, we have 
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Substitute equation (8) into equation (7) and simplify, we obtain the first order condition 
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Proof of Proposition 1.  

From Lemma 1, for any given ,  is strictly quasi-concave in . Thus for a given , 

we can find a unique optimal  that maximizes . We define 
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Proof of Proposition 2.  
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Simple algebraic transformation of the above yields   ZYeY =
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Similarly, we can show that this holds when one product runs out. □ 

 

Proof of Proposition 3. 

From equations (11),  
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We then have
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)(ln)(ln )0,(1)()()0,1(1)()( 1110111101 xVtutaxVtuta tt eWeW ++ Δ−−−+Δ−−− > ββ

)()( )0,1(1)()()0,(1)()( 1110111101 −Δ−−−Δ−−− ++ > xVtutaxVtuta tt eWeW ββ

Therefore, , i.e., 0)0,()0,1( 1111 <Δ−+Δ xVxV tt )0,( 111 xVt+Δ  is non-increasing in . We already show 

that is increasing in ; thus  is non-increasing in . 

1x

)0,,( 1
*

1 xtr )0,( 111 xVt+Δ )0,,( 1
*

1 xtr 1x

Similarly, we can show that  is non-increasing in .□ ),0,( 2
*

2 xtr 2x

 

Additional Numerical Cases for Table 3. 

 
   c1=2, 

c2=3 
c1=3,  
c2=2    

c1=2, 
c2=3 

c1=3,  
c2=2 

k s1 s2 x1 x2 x1 x2 k s1 s2 x1 x2 x1 x2

0.06 0.1c1 0.5c2 1 3 0 4 0.12 0.1c1 0.5c2 1 6 0 8 
0.06 0.1c1 0.6c2 1 3 0 5 0.12 0.1c1 0.6c2 1 7 0 8 
0.06 0.1c1 0.7c2 1 3 0 5 0.12 0.1c1 0.7c2 1 7 0 9 
0.06 0.1c1 0.8c2 1 3 0 5 0.12 0.1c1 0.8c2 1 8 0 9 
0.06 0.1c1 0.9c2 1 4 0 6 0.12 0.1c1 0.9c2 1 9 0 10 
0.06 0.2c1 0.5c2 1 3 0 4 0.12 0.2c1 0.5c2 1 6 0 8 
0.06 0.2c1 0.6c2 1 3 0 5 0.12 0.2c1 0.6c2 1 7 0 8 
0.06 0.2c1 0.7c2 1 3 0 5 0.12 0.2c1 0.7c2 1 7 0 9 
0.06 0.2c1 0.8c2 1 3 0 5 0.12 0.2c1 0.8c2 1 8 0 9 
0.06 0.2c1 0.9c2 1 4 0 6 0.12 0.2c1 0.9c2 1 9 0 10 
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0.06 0.3c1 0.5c2 1 3 0 4 0.12 0.3c1 0.5c2 1 6 0 8 
0.06 0.3c1 0.6c2 1 3 0 5 0.12 0.3c1 0.6c2 1 7 0 8 
0.06 0.3c1 0.7c2 1 3 0 5 0.12 0.3c1 0.7c2 1 7 0 9 
0.06 0.3c1 0.8c2 1 3 0 5 0.12 0.3c1 0.8c2 1 8 0 9 
0.06 0.3c1 0.9c2 1 4 0 6 0.12 0.3c1 0.9c2 1 9 0 10 
0.06 0.4c1 0.5c2 2 2 1 4 0.12 0.4c1 0.5c2 1 6 0 8 
0.06 0.4c1 0.6c2 1 3 1 4 0.12 0.4c1 0.6c2 1 7 0 8 
0.06 0.4c1 0.7c2 2 3 1 5 0.12 0.4c1 0.7c2 1 7 0 9 
0.06 0.4c1 0.8c2 2 3 1 5 0.12 0.4c1 0.8c2 1 8 0 9 
0.06 0.4c1 0.9c2 1 4 1 6 0.12 0.4c1 0.9c2 1 9 0 10 
0.06 0.5c1 0.5c2 2 2 1 4 0.12 0.5c1 0.5c2 1 6 0 8 
0.06 0.5c1 0.6c2 2 3 1 4 0.12 0.5c1 0.6c2 1 7 0 8 
0.06 0.5c1 0.7c2 2 3 1 5 0.12 0.5c1 0.7c2 1 7 0 9 
0.06 0.5c1 0.8c2 2 3 1 5 0.12 0.5c1 0.8c2 1 8 0 9 
0.06 0.5c1 0.9c2 2 4 1 6 0.12 0.5c1 0.9c2 1 9 0 10 
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